
Representing diversity in communities of
Bayesian decision-makers
Kshanti A. Greene, Joe M. Kniss and George F. Luger

Department of Computer Science
University of New Mexico

kshanti, jmk, luger@cs.unm.edu

Abstract—High-quality information has emerged from the
contributions of many using the wiki paradigm. A logical next
step is to use the wisdom of the crowd philosophy to solve
complex problems and produce informed policy. We introduce
a new approach to aggregating the beliefs and preferences of
many individuals to form models that can be used in social policy
and decision-making. Traditional social choice functions used to
aggregate beliefs and preferences attempt to find a single solution
for the whole population, but may produce an irrational social
choice when a stalemate between opposing objectives occurs.
Our approach, called collective belief aggregation, partitions a
population into collectives that share a preference order over the
expected utilities of decision options or the posterior likelihoods
of a probabilistic variable. It can be shown that if a group
of individuals share a preference order over the options, their
aggregate will uphold principles of rational aggregation defined
by social choice theorists. Super-agents can then be formed
for each collective that accurately represent the preferences of
their collective. These super-agents can be used to represent the
collectives in decision analysis and decision-making tasks. We
demonstrate the potential of using collective belief aggregation
to incorporate the objectives of stakeholders in policy-making
using preferences elicited from people about healthcare policy.

I. INTRODUCTION

We introduce a new approach to aggregating the beliefs
and preferences of many individuals to form models that
maintain the population’s diversity. These models can be
used to form policy and make decisions at societal scales.
Computational models for social decision-making that attempt
to incorporate the “wisdom of the crowd” philosophy have
the potential to change the decision-making paradigm in a
society. There is promise in incorporating the experiences and
objectives of individuals to form models for collective policy-
making that will enable them to have a direct influence in the
social, economic, and political decisions that affect them. We
have seen that high-quality knowledge can emerge from large
numbers of contributors using the wiki paradigm. Our goal is
to enable informed and appropriate policies to emerge from
the wisdom of the crowd.

Several theoretical limitations must be addressed before
an organization or society can take actions that are based
on aggregated beliefs and preferences of its members. In
particular, the spirit and objectives of the a community’s
contributions should be preserved in a community solution.
However, techniques such as voting and averaging will not
always produce rational results. In particular, social choice
and Bayesian theorists state that it is not possible to combine,

or aggregate arbitrary beliefs or preferences to form a single
rational solution [1], [2], [3]. For example, the Nobel-laureate
economist Kenneth Arrow showed that attempting to find a
“social preference” order given a ranked order of options
from multiple individuals can result in a situation that does
not conform to principles of rational aggregation [1]. These
findings were extended for Bayesian decision-making when
aggregating probabilistic beliefs and utilities [3], [2].

Our goal is to form an accurate representation of a pop-
ulation’s diverse beliefs and preferences from which people
can create new paradigms for rational decision-making. In [4]
we introduced our approach for clustering individuals based
on their beliefs and preferences prior to aggregation. In this
paper, we partition a population into collectives based on each
individual’s expected utility of a set of decision options. In
particular, we show that if a group of individuals share a
common preference order over the decision alternatives, that
their aggregate will uphold the rationality properties defined by
social choice theorists. Super-agents that accurately represent
each collective can then be used to initialize decision analysis,
policy-making and decision-making techniques.

In this article we will demonstrate some techniques for
decision analysis and decision-making using super-agents. For
example, we apply our approach to form super-agents that
negotiate healthcare policy options “on behalf” of their col-
lective members. The decision-making techniques presented
in this paper are not meant to be exhaustive. Our intention is
to present an approach that forms an accurate representation
of a diverse population and to spark new discourse in pol-
icy formation and decision-making that leverages competing
objectives instead of attempting to average it away.

The article is organized as follows. Section II summarizes
the foundational theories of this research, including Bayesian,
social choice and game theories. Section III discusses rational
social choice in more depth and shows two irrational social
choice results that occur in Bayesian aggregation. Section
IV introduces our collective belief aggregation approach that
forms a representation of a diverse population. Section V
demonstrates that super-agents can be used to represent collec-
tives’ preferences in decision analysis, game theoretic analysis
and negotiation techniques.



II. BACKGROUND

A. Bayesian Networks

This research is based on a framework that is used to model
reasoning in the presence of uncertainty. A Bayesian network
is a form of graphical model that integrates the concepts of
graph theory and probabilistic reasoning [5], [6], [7]. These
networks define dependencies (and independencies) between
random variables that can represent causality, implication or
correlation. In a typical Bayesian network, random variables
are represented by nodes and conditional relationships are
represented by directed edges between the nodes. A variable is
conditioned on all of its parents, described by the expression
P (X|Pax) where Pax are the parents of X [5].

Bayesian networks can be extended to address deci-
sion problems using influence diagrams [8], also known as
Bayesian decision networks. In addition to nodes representing
random variables (or chance nodes), influence diagrams con-
tain decision nodes, representing a set of decision alternatives;
and utility nodes, representing the value or risk associated with
a possible outcome.

In the work described in this article, Bayesian decision
networks are used to represent decisions and the factors that
influence decisions. For example, instead of asking determin-
istic questions for complex issues such as “do you support
healthcare reform?” we ask individuals to consider which
factors would increase or decrease their support for healthcare
reform.

B. Social Decision-making

Social choice theory, also called social welfare theory, is
a branch of research that has involved researchers in voting
theory, economics and statistics. Social choice theory analyzes
the manner in which one can determine a social choice,
or collective decision based on the beliefs and preferences
of a group of individuals [1], [9], [3], [2]. The area of
research was launched by economist Kenneth Arrow’s when he
introduced his rationality properties for combining preferences
and theorems on the limitations of finding a social choice
[1]. Many researchers followed to analyze and expand upon
his findings in deterministic and Bayesian environments [3],
[2]. In summary, theorists discovered that there is no single
social choice function that conforms to a set of mathematical
principles for combining beliefs and preferences in general.
The findings of these authors that are relevant to the research
described in this article are discussed in more detail in Section
III.

Game theory is the mathematical study of interacting agents,
each with the self-interested goal of improving their own
situation [10]. The value of a situation is determined by each
player’s utility or expected utility. Game theory describes
many types of solutions and strategies that are considered
rational behavior in competitive and strategic environments.
For instance, a Nash equilibrium solution occurs if all players
have taken on a strategy that maximizes their own utility, given
the strategies of the other players [10].

III. RATIONAL SOCIAL CHOICE

This article addresses a precise definition of rationality,
introduced by social choice theorists for the purpose of com-
bining beliefs and preferences [1], [9], [3], [2]. Our goal is
to find one or more social choice solutions that uphold a
set of principles for rational aggregation based on the beliefs
and preferences of a group of individuals. We do not attempt
to address the issue of whether humans behave rationally. In
particular, no judgment is made about the correctness of the
individuals’ beliefs. Nor are any assumptions made that the
individuals or group would act consistently according to their
beliefs and preferences.

This section discusses the principles of rationality that
have been defined by social choice theorists and illustrates
the failure of Bayesian aggregation methods with a simple
decision network. The remainder of the article presents an
approach that enables belief and preference aggregation for
decision-making that upholds these properties for rational
aggregation.

A. Preference Relations

The notation in Table I is used to describe the pairwise
preference relationships that indicate the preference ranking
between two alternative options x and y [1]. A combination
of these relations will form a preference order over a set of
three or more options. For example, suppose person A prefers
vanilla ice cream to chocolate, and chocolate to strawberry.
Their pairwise preference orders would be vPac and cPas.
Putting them together for all flavors results in vPacPas. Sup-
pose another individual B prefers vanilla to chocolate, but is
indifferent between chocolate and strawberry. B’s preference
order could be vPbcIbs or vPbsIbc. Since both individuals
prefer vanilla to chocolate, we could make a generalization
that states vPcRs.

TABLE I
PAIRWISE PREFERENCE RELATIONS

x, y: alternative options
i, j: individuals
P : a preference relation representing strict preference
I: a preference relation representing indifference
xPy: a group prefers x to y
xIy: a group is indifferent to x and y
xPiy: an individual i strictly prefers x to y
xIiy: an individual i is indifferent to x and y (doesn’t prefer either)

B. Arrow’s Axioms

The properties in Figure 1 are a subset of the properties
for rational aggregation introduced by economist Kenneth
Arrow [1], and later adapted by Arrow and other researchers
[9], [2]. These social choice theorists determined that these
properties must hold for belief and preference aggregation to
be considered rational. The full set of properties is discussed
in [11]. The properties in Fig. 1 can be shown to be broken
in a Bayesian environment and are relevant to the research
described in this article.



Given a population P a social choice solution should have
the following properties:

1) Pareto optimality (should be at least weekly Pareto
optimal):

a) Weak Pareto principle (WP). For all x and y,
if xPiy for all i, then xPy:

b) Strong Pareto principle (SP). For all x and y,
if xRiy for all i, and xPiy for some i, then
xPy:

2) Non-dictatorship and non-imposition (NDIP). There
is no dictator. Individual i is a dictator if, ∀x and
∀y, xPiy → xPy. Non-imposition means that no
order has been pre-determined for any individual.

Fig. 1. Two of the properties for rational preference aggregation defined by
Kenneth Arrow [1], [9]

C. A Motivating Example

Policy-making and politics are fields that exemplify the
challenges and rewards of combining diverse and often con-
flicting beliefs. Diversity can result in harmonious policy
decisions that consider everyone’s point of view, or it can cause
polarization and increase feelings of detachment from a com-
munity. Our goal is to enable policy-making that represents all
significant beliefs, and enables groups to objectively cooperate
to achieve a goal without attempting to force consensus. To
this end, the examples in this article address various political
and policy-making situations.

We begin with a situation that can be generalized to other
policy decisions. Suppose there is a logging interest that would
like to clear a forest to sell the lumber or to sell the land for
development. If the government were to get involved in the
decision of whether to log or not, policy could be developed
that is either pro-logging interest or pro-environment.

The decision network shown in Figure 2 represents a group
decision about whether a vote should be held to introduce a
new policy. If no vote occurs then no policy will be enacted.
Each individual in the group has a utility for each policy deci-
sion. Each individual also has a belief in which policy would
win if a vote is held. In Figure 2, the rectangle represents the
decision to put the policy to vote or not. The oval represents
the conditional probability of Policy given the V oteAction
decision, represented by P (Policy|V oteAction). Policy will
be one of [E,L,N ], where E= environmental, L= logging,
N = none. The utility of each policy option, U(Policy) is
represented by the diamond. The range of utility is [−2, 2],
with a negative utility indicating an objection to the policy
option. Inference on the network will determine the expected
utility of the decision options— to vote or not to vote. Equation
1 computes the expected utility of each decision option.

EU(V oteAction) = P (Policy|V oteAction)U(Policy)
(1)

Fig. 2. A decision network representing a decision to put a new policy to
vote.

D. A Non-Pareto Optimal Solution

We adapt a demonstration by Hylland and Zeckhauser [3] to
the decision network described in the previous section. If the
individuals in a group making the vote decision have opposing
beliefs and utilities, it is possible that the aggregate of their
beliefs will result in a non-Pareto optimal solution. In other
words, there is some option other than the social choice that is
preferred by all individuals. Suppose there are two individuals
i1 and i2. The individuals’ conditional probability tables
(CPTs) for Pi(Policy|V oteAction) are shown in Figure 3,
indicating their belief in the likelihood of each policy given
that the policy is put to a vote. If there is a vote the policy
will be either E or L. If no vote is held, then there will be no
policy. The individuals’ utilities for each policy decision are
shown in Table II.

P1(Policy|V oteAction) VoteAction
V ote NoV ote

Policy
E 0.75 0.0
L 0.25 0.0
N 0.0 1.0

P2(Policy|V oteAction) VoteAction
V ote NoV ote

Policy
E 0.25 0.0
L 0.75 0.0
N 0.0 1.0

Fig. 3. Pi(Policy|V oteAction) for two individuals i1 and i2.

TABLE II
UTILITIES Ui(Policy) OF THE POLICY OPTIONS FOR TWO INDIVIDUALS.

U1(Policy)
E L N
1.0 -1.2 0.0

U2(Policy)
E L N

-1.2 1.0 0.0



The results of applying an arithmetic mean to find the
consensus CPT, P0(Policy|V oteAction), are shown in Table
III. The consensus on policy utilities, U0(Policy), is shown
in Table IV. The geometric mean will result in similar values.
Table V compares the results of applying equation 1 to each
individual’s beliefs and utilities with the results of applying the
equation to the consensus beliefs and utilities. The best option
for each individual and the social choice (EUo(V oteAction))
is shown in bold. We can see that the consensus favors the
opposite decision option that both individuals favor. In other
words, the consensus option is not Pareto optimal.

TABLE III
CONSENSUS CONDITIONAL PROBABILITY TABLE FOR

P0(Policy|V oteAction) COMPUTED USING THE ARITHMETIC MEAN.

P0(Policy|V oteAction) VoteAction
V ote NoV ote

Policy
E 0.5 0.0
L 0.5 0.0
N 0.0 1.0

TABLE IV
CONSENSUS UTILITIES U0(Policy) FOR THE POLICY OPTIONS COMPUTED

USING THE ARITHMETIC MEAN.

U0(Policy)
E L N

-0.1 -0.1 0.0

TABLE V
EXPECTED UTILITIES OF EACH INDIVIDUAL AND THEIR CONSENSUS. THE

OPTIONS WITH THE HIGHEST EXPECTED UTILITY ARE SHOWN IN BOLD.

V ote NoV ote
EU1(V oteAction) 0.45 0.0
EU2(V oteAction) 0.45 0.0
EU0(V oteAction) -0.1 0.0

E. Dictatorship

The next example demonstrates a situation that breaks
the NDIP (non-dictatorship) property in Figure 1 using the
decision network in Figure 2. Suppose that the table on the
top of Figure 4 contains the conditional probabilities for a
group g of three individuals who all happen to have the
same beliefs. The table on the bottom of Figure 4 contains
the probabilities for an individual d who waits to supply his
values until the others supply theirs. Since he can see their
values, he can compute what he needs to provide in order to
skew the vote decision in his direction. The consensus of the
group composed of g ∪ d is shown in Table VI. The utilities
U(Policy) are identical for all individuals and are shown in
Table VII.

Table VIII shows the expected utility for the group g,
the dictator d and their combined consensus computed using
equation 1. Again the best option for the group or individual is

Pg(Policy|V oteAction) VoteAction
V ote NoV ote

Policy
E 0.4 0.0
L 0.6 0.0
N 0.0 1.0

Pd(Policy|V oteAction) VoteAction
V ote NoV ote

Policy
E 0.9 0.0
L 0.1 0.0
N 0.0 1.0

Fig. 4. The table on the top contains conditional probabilities for a group g
of three individuals with identical beliefs. The table on the bottom shows the
conditional probabilities for a single individual d.

TABLE VI
THE CONSENSUS CONDITIONAL PROBABILITIES OF THE GROUP

COMPOSED OF g ∪ d.

P0(Policy|V oteAction) VoteAction
V ote NoV ote

Policy
E 0.525 0.0
L 0.475 0.0
N 0.0 1.0

TABLE VII
CONSENSUS UTILITIES U0(Policy) FOR THE POLICY OPTIONS COMPUTED

USING THE ARITHMETIC MEAN.

U0(Policy)
E L N
1.0 -1.0 0.0

shown in bold. We see that in this situation the dictator is able
to flip the preference of the other individuals by a slim margin.
This example demonstrates how a single individual can skew
the consensus solution in his favor using quantitative beliefs
and utilities. According to Arrow’s axioms for preference
aggregation, this is considered a dictatorship [1]. A more
general phenomenon is occurring that causes the mean of a
set of quantitative values to be skewed by a small number
of highly divergent values. In addition to the dictatorship
situation, this causes the consensus to “lose” the representation
of the population’s beliefs and preferences. In other words, as
a set of values becomes more divergent, the set’s mean will
become less similar to the original beliefs.

TABLE VIII
EXPECTED UTILITIES OF A GROUP EUg(V oteAction) OF THREE

INDIVIDUALS, AN INDIVIDUAL EUd(V oteAction) AND THEIR
CONSENSUS EUg(V oteAction).

V ote NoV ote
EUg(V oteAction) -0.2 0.0
EUd(V oteAction) 0.8 0.0
EU0(V oteAction) 0.05 0.0



F. Rational Social Choice Definition

We define a rational social choice (RSC) as a social
choice solution for a group of individuals that upholds the
properties for rational aggregation defined by Arrow [1], [9]
and extended for a Bayesian environment by Hylland and
Zeckhauser [3]. Two of these properties were shown in Figure
1. The remainder of the properties are discussed in [12].

IV. COLLECTIVE BELIEF AGGREGATION

Two significant limitations of existing belief and preference
aggregation approaches are that (1) they can form consensus
models that under-represent divergent objectives (2) they may
result in an irrational social choice solution in the presence of
divergence, as shown in Section III. In [4] we introduced an
approach that clusters individuals based on the similarity of
their beliefs and preferences and then finds an aggregate for
each cluster. The clustering approach improved the represen-
tation of the population’s beliefs and preferences, measured
by the Kullback-Liebler divergence measure.

We now present an aggregation approach that addresses
the second limitation of belief and preference aggregation
approaches. The collective belief aggregation (CBA) approach
partitions a population into subgroups that agree on the relative
desirability of a set of decision options. The relative desirabil-
ity is determined by the Bayesian rank order of the expected
utilities for the decision options computed using a Bayesian
decision network. Inference on a decision network computes
the expected utility of a set of decision options. The Bayesian
rank order is the preference order of the decision options based
on the decreasing order of the options’ expected utilities. For
example, if an individual’s expected utility for the V ote option
is -1.2 and the expected utility for the NoV ote option is 0.0,
then the decreasing order of the expected utilities is [0.0,−1.2]
and the individual’s Bayesian rank order (or just rank order)
is [NoV ote, V ote]. Using the preference relations defined in
Section III-A, the relation would be NoV otePV ote, meaning
NoV ote is preferred over V ote. A Bayesian rank order could
also include indifference if the expected utilities of two options
are equivalent.

Our partitioning approach forms collectives from individuals
who have the same Bayesian rank order of the decision
options. We formally define a collective as a subset of a
population such that a specific property holds for all members
of the subset [12]. In this case the property is the Bayesian
rank order. In the previous examples all individuals with the
rank order NoV otePV ote would be placed in one collective
and all the individuals with the rank order V otePNoV ote
would be placed in another collective. If all individuals have
a strict preference, then the vote action decision would result
in only two collectives. In general, the number of collectives
is dependent on the number of decision options. If there are
d decision options, then there are O(d!) possible collectives.
The number of actual collectives in a population is the number
of unique rank orderings that the individuals in the population
provide.

Since all members of a collective provide the same rank
ordering, the consensus (mean) of the collective will also have
the same rank ordering. The proof for this is demonstrated in
[12]. The consensus of each collective, called the collective
belief, is the mean of all members’ expected utilities. The
benefit of a collective maintaining the same rank ordering
as its members is that no individual member can prefer a
different solution than the collective’s consensus solution. This
fact means that a rational social choice can be derived from
the collective belief (also shown in [12]).

The CBA approach can be applied to any discrete prob-
ability distribution. In a traditional (non decision) Bayesian
network, the rank order represents the relative likelihood of
the possible outcomes, ordered from most to least likely.

Aggregation approaches that attempt to find a single con-
sensus solution may result in an irrational social choice when
there is a stalemate or significant divergence in belief. In
contrast, collective belief aggregation finds a set of rational
social choice solutions that may need to be resolved through
other means, such as through the game theoretic analysis in
Section V-B and negotiation techniques in Section V-C).

A. Posterior versus Prior Collective Belief Aggregation

Collective belief aggregation can be performed such that
the collectives are discovered based on the posterior results of
inference or the collectives are discovered prior to inference.
The accuracy of a CBA algorithm is measured by the percent
of individuals that are placed in the correct collective accord-
ing to their Bayesian rank order over the decision options. In
order to guarantee rational social choice for each collective, a
CBA algorithm must guarantee 100% accuracy. Otherwise, it
is possible that an individual will be placed into a collective
whose consensus rank order is different than the individual’s
rank order.

Given a population of individuals, each having a network
containing a decision D with d options, the exact, brute force
CBA algorithm to discover and aggregate the collectives for
D works as follows:

1) Run an inference algorithm on each network to compute
the expected utility for each of the d decision options.

2) Place each individual into a collective based on the
individual’s expected utility for the decision options.

3) Compute the average expected utility, or collective be-
lief, for each decision option and each collective.

4) Order the d options in decreasing order of their expected
utilities to determine each collective’s Bayesian rank
order.

This approach is called the posterior CBA algorithm (after
posterior compromise [13]) because it forms the collectives
and does aggregation after inference. While this algorithm will
result in 100% accuracy, the number of networks that inference
must be run on is the population size.

Prior CBA uses a partitioning algorithm, such as clustering
[14], to make an initial guess at how the collectives will form
based on the population’s prior beliefs (in the form of prior and
conditional probabilities) and utilities. A consensus network is



then formed from the mean of each cluster’s prior beliefs, as in
the examples in Sections III-D and III-E. This approach would
allow one to reduce the number of networks that inference
needs to be performed on. However 100% accuracy and an
RSC cannot be guaranteed for the collectives.

Using the network in Fig. 2, a simulation was created
in which the beliefs and utilities of the individuals in a
population were initialized using a Gaussian mixture model
for P (Policy|V oteAction) and a uniform distribution for
U(Policy) in the range [−2, 2]. The mixture model had
µ = [0.0, 0.25, 0.5, 0.75, 1.0] and σ = [0.1, 0.2, 0.2, 0.2, 0.1].
The prior and posterior CBA algorithms were applied to a
population of 10,000. The accuracy of the prior CBA algorithm
is shown in Figure 5. The different groups of points represent
different mixture weights for Pi(Policy|V oteAction) over
a number of runs of the simulation. The diamond group’s
mixture weights resulted in a stronger consensus centered
around an expected utility of 0.0. The triangle group’s beliefs
were more polarized, resulting in two peaks of expected utility
near −1.0 and 1.0.

Fig. 5. The accuracy of prior aggregation using three mixture models.

We can see from Fig. 5 that the accuracy of the prior
aggregation algorithm increased as the standard deviation
increased. Since the network contained only two variables,
the high deviation of one variable resulted in clusters that
fairly accurately predicted the rank order of the expected
utilities. However, as the network size increases, the accuracy
of the prior aggregation algorithm may decrease because more
variables (dimensions) are involved in clustering. The prior
and posterior CBA algorithms and a hybrid algorithm called
incremental aggregation are discussed in depth in [11].

B. Revisiting Non-Pareto Optimal Solutions

We now revisit the example in Section III-D using collective
belief aggregation. Posterior CBA will result in both individ-
uals being placed in the same collective, with an average
expected utility of 0.45 for the vote option, which is also
the Pareto optimal solution. Using prior aggregation, if a
partitioning algorithm first separates the two individuals into

their own collectives, each collective’s expected utility will be
0.45 for the vote option, again resulting in a Pareto solution.
Again, only posterior collective aggregation can guarantee a
rational social choice, as discussed in Section IV-A.

C. Revisiting Dictatorship

We first note that the dictatorship situation in the example
in Section III-E would also occur if posterior aggregation were
used without forming collectives. In fact, the irrational social
choice will result any time the individuals’ expected utility of
the V ote option (EUi(V ote)) causes the following inequality
to hold, where x is the number of individuals in the g group.

x∑
i=1

EUi(V ote) > −EUd(V ote)

The posterior collective belief aggregation approach will
form separate collectives for the group of individuals who
prefer the NoV ote option and the individual who prefers
the V ote option. In this case, each collective’s solution has
equal representation and the would-be dictator can no longer
“flip” the result in his favor. The more general result of
this observation is that all unique preference orders will be
represented in the output of the collective belief aggregation
approach. Since each collective maintains the rank order of its
members, the relative preferences between options are always
maintained.

V. SOCIAL DECISION-MAKING WITH SUPER-AGENTS

The previous section introduced the collective belief ag-
gregation approach and discussed how collectives can emerge
from a population whose aggregate will uphold rational social
choice properties. Since the relative preference order of all
members of a collective is the same, some generalizations can
be made about each collective. These generalizations are the
collective belief— which is the mean of the expected utilities
for the decision options, and the Bayesian rank order— which
is the deterministic preference order over the decision options.
A “super-agent” is formed for each collective that takes on
the collective belief and Bayesian rank order. These super-
agents can then accurately represent the relative preferences
of their collective members in decision-making. This section
will demonstrate some techniques for analyzing and making
decisions using the super-agents including game theoretic
analysis and negotiation.

A. Extracting the Pareto Optimal Solutions

The goal of social choice theory is to find one Pareto optimal
solution for a population. In reality, there may be more than
one solution that meets the Pareto condition. After partitioning
a population into collectives, a logical next step in the social
decision-making process might be to find the set of Pareto
optimal solutions for the population. Discovery of the Pareto
optimal solutions involves eliminating the solutions that are
preferred by no one (or no collective). In other words, there
is always another solution that everyone prefers.



An algorithm was developed to extract the Pareto solutions
from the super agent’s Bayesian rank orders. The algorithm,
described in [11], finds the set of options that uphold the strong
Pareto condition by first finding those that do not. The Pareto
optimal solutions are the minimally acceptable social choice
solutions for a population. Other decision-making techniques
and analyses can be used to reduce this set further.

B. Game Theoretic Analysis

A concept developed by Koller and Milch [15] forms the
basis for game theoretic analysis using super-agents. The
authors introduced multi-agent influence diagrams (MAIDs)
that represent strategic situations between multiple agents.
The MAIDs in [15] assume that an agent represents a single
entity. We allow an agent to be a super-agent that represents a
collective. Figure 6 contains a MAID that represents a strategic
situation between a community and a logging interest. In
this case, multiple super-agents that have different Bayesian
rank orders over the V oteAction decision may emerge, rep-
resenting different factions in the community. Another agent
represents the logging interest and its decision to log and lobby
depending on which policy is more likely.

Fig. 6. A MAID that represents the community’s beliefs and actions
(V oteAction, Effort, Environment and Jobs nodes) and a logging
interest’s beliefs and actions (Lobby, Log, Cost and Profit nodes) The
dashed edges represent the values that an agent considers when he makes a
decision.

As in the MAIDs in [15], the dashed lines in Fig. 6 represent
decisions or variable nodes that affect a decision. These are
the parents of a decision D, or Pa(D). The Nash equilibrium
solutions for the super-agents and the logging interest agent
are the decision options that maximize the expected utility of
each agent given the parents, Pa(D), of each decision [15].
Simulations that find the Nash equilibrium solutions as well
as the maximin and minimax strategies for this MAID are
discussed in [11]. Using MAIDs representing the beliefs and
actions of super-agents, we are able to efficiently apply game
theoretic analysis in large populations.

C. Negotiating Super-agents

The next demonstration uses preferences elicited from peo-
ple using Amazon.com’s Mechanical Turk (mturk.com), which
is an online source for low-cost human labor. A few days

before the 2010 healthcare bill was voted on in the US
Congress, we asked Mechanical Turk workers to state whether
they supported the bill as is, did not support the bill, or would
support it with changes. They were then given a number of
options (suggested by other Mechanical turk workers) and
asked if adding each option would decrease, increase or have
no effect on their support for the healthcare bill. 200 people
provided their opinion.

The goal of the following experiment is to find the set of
options that will maximize the number of people that are likely
to support the bill. Each super-agent represents the interest of
its collective. Negotiation between super-agents occurs in the
following manner. Suppose there are two super-agents, i and
j, and two options, a and b. Super-agent i’s collective supports
a but super-agent j’s collective does not. However super-agent
j suggests adding b, which would gain the support of its
collective. If adding b will not lose the support of i’s collective,
then the two super-agents have “negotiated” to include both
options.

In the experiment, a super-agent represents each collective
containing individuals that have the same opinion about a set
of changes. We use a Bayesian network to represent the likeli-
hood that an individual will support the healthcare bill given a
set B of b possible options to add to the bill. Each option in B
will be a parent of Support. The conditional probability table
representing P (Support|B) will then indicate the likelihood
that Support is true or false given that each option in B could
be true or false.

The posterior probability P ′(Support) when all options
are false is the original support likelihood each individual
provided. In a real-world situation we would ask people to
quantify how much an option increases or decreases their
support. For this demonstration, a small value (0.15) was
then added or subtracted from the original likelihood for each
option in B that is true, if the change increased or decreased
their likelihood of support, respectively.

Collectives were then formed from individuals that had the
same rank ordering over the support values for all combi-
nations of options in B. In other words, the rank order of
P (Support|bi) was the same for each b ∈ B. This means
that each super-agent can accurately represent all members of
its collective for negotiation on all options. The rank ordering
possibilities were TF– indicating a likelihood of support, FT–
indicating a likelihood of no support, and {FT}– indicating
that the collective was undecided, in other words its likelihood
for P (Support = true|B) was near 0.5. Given the set B, the
subset of options set to true that maximizes the likelihood of
support for the bill is the optimal set of options.

Table IX shows four different options for which the indi-
viduals provided their opinions. Given these options, 31 out
of 34 = 81 possible collectives emerged from the population,
ranging in size from one to 79. The largest collective repre-
sented the individuals who supported the bill given any com-
bination of the four options. Another collective containing 59
individuals would not support the bill no matter which options
were added. A number of collectives, with 1-7 members each,



were initially undecided or did not support the bill, but would
support the bill given different subsets of the four options.
Without any options added, 39.5% of the surveyed population
supported the bill, 32% did not and 28.5% were undecided.

Table X shows each combination of options that were
set to true, and the total number of individuals who would
likely support the bill given those options. The combination
that maximized likelihood of support– to 62.5%– was adding
mental health coverage and legislation to regulate the cost
of healthcare. This combination corresponds to the condi-
tional probability P (Support|M = true, C = true, T =
false,A = false).

TABLE IX
FOUR OPTIONS TO THE HEALTHCARE BILL.

Symbol Option Description
M Add mental health coverage
C Add legislation to regulate the cost

of healthcare
A Limit abortion coverage
T Tax premium insurance plans

TABLE X
TOTAL SUPPORT FOR THE BILL (OUT OF 200) GIVEN THE SELECTED

OPTIONS. THE BEST SET OF OPTIONS IS M,C (IN BOLD).

Options Support
All false 79

A 86
A,T 88
C,A 94
M,A 95

T 95
M,A,T 101
C,A,T 103
M,T 109
C,T 109

M,C,A 116
M 117
C 118

M,C,A,T 118
M,C,T 122
M,C 125

We can show that negotiation produces an optimal combi-
nation of options when a simple majority approach does not.
Table XI shows three options followed by the total number of
individuals whose support is gained or lost by introducing the
option when considered independently. A negative number (for
example for option S) means that a majority of the population
does not support the option. Attempting to increase support
by adding options that have a simple majority would result in
options C and E. However, negotiation agents that consider
all combinations of options results in a total support of 123
for [C,E] and a total gain of 125 for [C,E, S]. In this case the
S option gained support from a collective without losing that
collective’s support on the other two options. The surveyed
population’s diversity meant that a simple majority vote for
each option would not result in an optimal combination of
policies.

TABLE XI
THREE OPTIONS TO THE HEALTHCARE BILL AND THE NUMBER OF

INDIVIDUALS WHOSE SUPPORT IS GAINED (POSITIVE) OR LOST
(NEGATIVE) IF THE OPTION IS INTRODUCED.

Symbol Option Description Gain/Loss
C Add legislation to regulate the cost 125

of healthcare
E Expand medicare benefits 77
S Introduce a single-payer system -2

VI. SUMMARY

Instead of “averaging away” any conflict, our aggregation
approach allows competing objectives to emerge by parti-
tioning a population into collectives based on their expected
preference order over the decision options. Using posterior
aggregation, the aggregate of each collective will result in a
rational social choice for that collective. Super-agents can then
accurately represent each collective in policy and decision-
making endeavors. Future research directions include investi-
gating additional decision-making techniques using the super-
agents and elicitation techniques that form richer decision
models.
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